著名教育家陶行知关于人如何获得知识曾做过一个形象的比喻:“我们要有自己的经验做根,以这经验所发生的知识做枝,然后别人的知识才能接得上去,别人的知识方才成为我们知识的一个有机组成部分。”可见,基本活动经验是学生数学学习的必要前提,是其获得数学直觉的源泉。那么对于学生的数学学习而言,什么才是可以用来做“根”的基本活动经验呢?
一、重观察,重操作,丰富学生的表象,积累体验性经验
有研究表明,就智力和经验对学生概念学习的影响程度来看,经验的作用更大。孩子们的内心世界往往不是按照定义的方式来理解的,他们更多地按照先前眼睛看到的,尔后积累在脑海中的先前经验来给所学的抽象概念加以编码的。丰富的经验背景是学生理解概念的前提,否则将容易导致死记硬背概念的字面定义而不能领会概念的内涵。这里的“经验”,除了从学校学习中获得以外,学生从日常生活中获得的经验也起着非常重要的作用。事实上,学生掌握的数学概念大多是对自身经验经过辨别、分化、抽象、概括以后发展而来的。
学生认识分数远不像当初认识整数时那样来得顺利。这是因为,在学生的已有的活动经验中,来自有关“分数”方面的储备,远不如整数那样多。生活中,学生更多接触到的是可以一个一个地来数的自然数,当“1”需要再分时,人们又更喜欢用小数来表示(如商场里物品的标价等)。由于缺少丰富的表象来支撑,也缺少外显操作活动中来自感觉、知觉的经验,这给学生建立分数的概念带来了不小的困难。
尽管如此,教学还是得从学生所熟悉的感性材料入手,因为概念的形成过程实质上是抽象出某一类对象或事物的共同本质特征的过程,毫无疑问,辨别各种刺激模式,并在知觉水平上进行分析、筛选、辨认,根据事物的外部特征进行概括,是建立正确概念的第一步。既与分数的概念相通,又存在于学生的已有经验之中的,就是学生“均分”物体的经验了。
分蛋糕、分苹果,的确是生活中较好的关于“均分”的模型,因为学生都有过这样的经历。只是生活中人们并不习惯把一个蛋糕平均分成8块后,将其中的一块称为,而更多是称作“一小块”。但这并不妨碍学生对分数产生的感知,因为学生从分苹果、分蛋糕中,已经完成了初级阶段的抽象,即学生能够明白,以前经验中最小的“1”还是可以继续分下去的,这样分得的结果我们就得用新的数来表示了。这就把新的认知起点与旧有的经验联系起来了。相比之下,有的教材从“折纸”切入,学生便不能从操作中感受到“分”的必要性,由此引入分数多少显得牵强和生硬,这是对学生经验缺少深入细致的考察所导致的。
概念的抽象往往不是一次性完成的,分数概念的建立也不例外。我们可以从皮亚杰等人的研究成果中得到启发:“4-4岁半的儿童能把小的正规图形分成两半;6-7岁的儿童能把小的正规图形分成三份;7-9岁的儿童能把小的正规图形通过试错分成六份。”皮亚杰等人的研究成果告诉我们,学生通过面积的模型来认识分数比较容易。依此,组织折纸、填图等操作性活动,可以引导学生向更高一层的抽象发展,亦即线段、长方形、圆……,以致一个整块的物体,都也可以像分苹果、分蛋糕那样均分下去,在这方面它们具有共同的属性,这就是所谓的“二阶抽象”。
较之于“连续量模型”,学生对于“离散量模型”的理解,似乎来得更为困难。因为对学生而言,这是更高一层次的“三阶抽象”。把多个物体看做一个整体进行均分,在学生的已有活动经验中储备不多,加之整体“1”的类型并不像想象的那么简单,例如,形成分数至少关涉到以下几种不同的类型:⑴数量刚好为5个;⑵数量在5个以上并被分成了5等份;⑶数量比5多但不能被5整除;⑷数量比1多但比5少。
日常生活并不能为学生提供这些经过高度结构化处理的素材,只有教学这一专业活动才凸显这一功能,这是教师“浓缩”了前人探索的结果,使得素材本身更具“数学味儿”,它可以避免学生走太多的弯路,耗费太多的时间。
“几乎所有的人不仅在思维过程中避免使用语言,甚至还避免使用代数符号或任何其他的固定符号,总是运用模糊的表象进行思考。”很显然,学生建立分数的概念必须先积累大量的感官经验、操作经验,且这些体验性经验又具有某些相似性、共通性,然后经由多个层次的“抽象”这一心智活动才得以完成。而若不能以丰富的表象做支撑,概念的建立就成为无源之水、无本之木。
|